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Abstract .  We discuss the kinetics of an irreversible monomer-monomer model of 
heterogeneous catalysis. In this model, two reactive species, A and B, adsorb ir- 
reversibly onto single sites of a catalytic substrate; subsequently nearest-neighbour 
adsorbed AB pairs can bond to form a reaction product which desorbs from the 
substrate. The kinetics of this process is investigated in a mean-field approximation, 
where the catalytic substrate is considered to be an N-site complete graph. Two fun- 
damental limits are identified: ( a )  the adsorption-controlled limit, where the reaction 
on the surface occurs quickly, so that the overall process is IimiCed by the adsorption 
rate, and ( b )  the reaction-controlled limit, where adsorption occurs readily so that 
the overall reaction is limited by the conversion of unlike neighbouring monomers to 
an AB pair. By analysing the master equation for the probability density of coverage, 
we determine the rate at which the catalyst becomes ‘saturated’, i.e. completely cov- 
ered by only one species. We show that the saturation time is proportional to N ,  and 
we also derive the probability distribution for the substrate coverage. Numerical sim- 
ulations are performed on lattice substrates of finite spatial dimensionality d to test 
the range of validity of the mean-field approach. We find good agreement between 
simulations and mean-field theory for d = 2 and 3, but not for d = 1, suggesting that 
d = 2 is a critical dimensionality for the monomer-monomer process. 

1. Introduction 

Catalysis is a fundamental kinetic process in which the rate of particular chemical 
reactions is enhanced by the presence of a catalyst. Heterogeneous catalysis involves 
more than one phase, with the reaction being enhanced near an interface. A typical 
example is oxidation of molecular species a t  a metal surface, a process which underlies 
the conversion of nitrous oxide to  nitrogen dioxide in the presence of a platinum 
substrate in an automobile catalytic converter, for example. While oxidation does not 
readily occur in the gas phase, the reaction rate is greatly enhanced when the species 
are adsorbed on the substrate. After the adsorba.tes react on the catalyst, the product 
desorbs, thus allowing for the continuous operation of the system. 

The classical approach for understanding the kinetics of heterogeneous catalysis is 
based upon Langmuir’s theory for adsorption, combined with rate equations for the 
subsequent reaction [I ,  21. Langmuir’s adsorption theory is based on all species being 
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adsorbed equivalently on the available lattice sites, with the subsequent reaction on 
the surface being described by the law of mass action. These are assumptions of a 
mean-field character, as microscopic details, such as local fluctuations in concentration 
and excluded volume interactions, are ignored. However, recent studies suggest that  
fluctuations are a crucial element in driving the kinetics [3-51. For example, in the 
co-adsorption of CO and H, on Rh( 11 l), a short-range repulsive interaction between 
the adsorbed H and CO molecules induces a segregation of the two species, under 
certain conditions [3]. Analogous segregation effects are observed in a number of 
related situations [4,5]. This has a profound impact on the kinetics, because reactions 
between different adsorbed species can take place only along the boundaries in between 
the adsorbate islands. 

An intriguing feature of the effect of fluctuations is the phenomenon of satura- 
tzon, where the catalytic substrate ultimately becomes covered by one of the species 
only, thereby terminating the catalysis process. This has previously been referred 
to as ‘poisoning’ [6-121. In the chemical literature, however, poisoning refers to  a 
phenomenon whereby adsorption of a small amount of a foreign element destroys the 
catalytic character of a substrate [l]. Thus we adopt the term ‘saturation’ to  denote 
the termination of a catalytic process when a single species completely covers the 
substrate. In this paper, we investigate the role of fluctuations in determining the 
kinetics of the saturation phenomenon for the monomer-monomer process. In this 
model [6-91, two different reactive substances, A and B ,  adsorb and stick to  single 
sites of a catalytic substrate. Surface reactions are assumed to occur only between 
dissimilar species which are nearest-neighbours on the substrate. When the adsorp- 
tion rates for the two species are different, the substrate quickly saturates with the 
preferred species. For equal adsorption probabilities, the substrate still saturates, but 
a t  a much slower rate and with equal probability of saturation by either of the two 
species. This latter saturation arises because of fluctuations in the number of react- 
ing molecules and fluctuations in number space alone are sufficient to  account for the 
kinetics of saturation. 

These fluctuations are analysed in an approximation whereby the catalytic sub- 
strate is taken to  be a complete graph [12], in which each of the N sites on the substrate 
are connected to each other. This description allows one to  map the reaction onto a 
one-dimensional stochastic process, which we can then solve to  obtain the reaction 
kinetics. Despite the approximations inherent in the complete graph formulation, 
our  analytical results provide an attractive intuitive picture of the kinetics, and they 
agree with our Monte-Carlo simulation results when the dimensionality of the sub- 
strate, d > 2. Thus we infer that  d = 2 is a critical dimensionality for the process. 
Although many of our results are easily appreciated, the methodology outlined here is 
immediately applicable to  more complex and realistic models, such as the monomer- 
dimer catalysis reaction [6]. Thus our approach can serve as a useful starting point 
for understanding some of the intriguing features in this process, such as the existence 
of kinetic phase transitions and of a reactive steady state. 

It is important to  distinguish two basic limiting cases of catalysis. When the reac- 
tion on the surface occurs quickly, the process is limited by the adsorption rate. This 
is the adsorption-controlled limit. On the other hand, when adsorption occurs read- 
ily, the overall reaction is limited by the conversion of unlike monomers to  A B  pairs. 
This latter case is the reaction-controlled limit. While reaction-controlled processes 
constitute the majority of industrial applications, there are important examples of 
adsorption-limited processes, most notably the synthesis of ammonia and methanol [ 11. 
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In many instances, the kinetics in the reaction-controlled and adsorption-controlled 
limits are different. For the monomer-monomer model, however, we find only quan- 
titative differences between these two cases. Thus we focus only on the two limiting 
regimes, where a relatively simple treatment can be given, rather than treating the 
general case of arbitrary adsorption and reaction rates. 

In section 2, we define the monomer-monomer model, and elucidate the nature 
of the reaction-controlled and the adsorption-controlled limit. We also present a for- 
mulation for the kinetics on a complete-graph substrate. In section 3,  we solve the 
kinetics on the complete graph in the adsorption-controlled limit. From this solution, 
basic information about the rate of saturation is obtained. In section 4, we present 
the parallel results for the reaction-controlled limit. In section 5 ,  numerical data from 
Monte-Carlo simulations of the monomer-monomer process for various substrate di- 
mensionalities are given, and are compared with our mean-field results. We conclude 
in section 6. 

2. The monomer-monomer model 

In a typical surface catalytic reaction event, there are five basic stages [l] as illustrated 
in figure 1: (i) transport of reactants to the catalytic substrate, (ii) reactants close 
to the substrate adsorb, (iii) reaction on the substrate, (iv) reaction products desorb, 
and (v) reaction products are transported away from the surface. Steps (ii)-(iv) may 
be either irreversible or reversible, and we shall restrict ourselves to purely irreversible 
reactions. We also neglect the possibility that the adsorbates can diffuse on the sub- 
strate. In many instances, a constant external supply of reactants is maintained. 
Accordingly, steps (i) and (v) can be taken to occur infinitely quickly. Furthermore, 
steps (iii) and (iv) are not distinguishable in our modelling, and we therefore combine 
(iii) and (iv) into a single step of reaction and simultaneous desorption of Inhe product. 

SUBSTRATE 

Figure 1. Schematic representation of the various stages of heterogeneous cataly- 
sis: ( i )  transport of reactants to the substrate, (ii) adsorption of reactants onto the 
substrate, (i i i)  surface reaction, (iv) desorption of products, (v) transport away from 
the substrate. 
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Under these restrictions, the reaction-limited process corresponds to the rate of 
adsorption (ii) being much larger than the rate of reaction (iii). Reactants adsorb 
readily but then reside on the substrate for a considerable time before any reaction 
occurs. Thus the surface reaction is the rate-limiting step of the catalysis. In the 
adsorption-limited process, the adsorption rate is much less than the reaction rate. 
Therefore many deposition attempts are needed before adsorption actually takes place. 
When reactive species happen to occupy neighbouring substrate sites, however, the 
catalytic reaction occurs immediately. Consequently, adsorption is the rate-limiting 
step of the overall process. 

The realization of these steps in the monomer-monomer process involves first the 
adsorption of the two species, A and B ,  onto single substrate sites at  respective rates 
k A  and k,, to  become the adsorbates, A, and B,. Secondly, when adsorbates of 
different species occupy nearest-neighbour substrate sites, they react at  a rate k,  to 
form a product which desorbs, thus leaving two sites available for repopulation by 
reactants. This process can be represented by 

A + S % A ~  

B + S % B ,  (1) 

A, + B, -% ( A B )  t + 25’. 

If I c , , l c ,  >> k,,  the catalytic process is reaction-limited, while in  the opposite case, 
the process is adsorption-limited. 

In the adsorption-controlled limit, adsorption of an A (or a B )  is attempted onto 
an empty substrate site, with respective probabilities p = k A / ( k A  + kB) and q = 1 - p .  
After adsorption, if there happens to be an A and a B which are nearest-neighbour 
(more than one such ‘pair’ could arise), then a reaction immediately occurs where one 
pair bonds and desorbs from the substrate. After these steps, the time is incremented 
by an amount appropriate for adsorption occurring at  a constant rate. Repeating these 
steps yields a simple algorithm which models the kinetics in the adsorption-controlled 
limit. 

In the reaction-controlled limit, the substrate quickly becomes full and it is con- 
venient to  start with a substrate that is randomly filled by equal amounts of As and 
Bs. For this case, the process consists of first choosing a pair of neighbouring lattice 
sites. If the two sites are occupied by the same species, no reaction is possible and 
an elemental reaction step has been completed. If the two sites are occupied by op- 
posite species, a reaction occurs in which the reactants desorb, with each unoccupied 
site then being immediately refilled by either an A with probability p ,  or a B with 
probability q. The time is then incremented by 1/N, and the reaction step begins 
anew. 

TO realize the mean-field limit, we model the substrate by an N-site complete 
graph with coordination number z = N - 1. On this graph, the spatial distribution of 
the reactants is irrelevant, and global densities suffice to  describe the system. In the 
adsorption-controlled limit, the instantaneous reaction of A B  pairs and the fact that 
all sites are reactively connected forbids the coexistence of As and Bs on the surface. 
The system can thus be characterized by the variable n = nA - n,, where n4 and 
n, are the numbers of A and B adsorbates, respectively. The number difference n 
therefore equals nA if the substrate contains only As, and equals -nB if the substrate 
contains only Bs. If an A is deposited, either it adsorbs, or an A B  pair is formed 
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which immediately desorbs. In either case, n is incremented by 1. Similarly, the 
attempted deposition of a B leads to a decrement of n by 1. Thus the number 
difference evolves according to a one-dimensional stochastic process on the interval 
-N, , , , , - 1 , O ,  1,. , . , N ,  with hopping probabilities which depend on p and on the 
number of vacant substrate sites (figure 2(a)).  In the reaction-controlled limit, any 
sites that are cleared by a reaction are immediately refilled, and the lattice is always 
full. Consequently, one can characterize the state of the system by the single variable 
n = nA - nB = 2nA - N,  which changes by 0 or f 2  in each elemental reaction event, 
and which ranges between -N and + N  (figure 2 ( b ) ) .  

- N , . . .  , n - 1  n n + l ,  . . . ,  N 

- N , .  . . , n - 2  n n + 2 , .  . , , N  

( b )  

Figure 2. Schematic illustration of the stochastic process underlying the mean-field 
dynamics of the monomer-monomer model for ( a )  the adsorption-controlled limit, 
and ( b )  the reaction-controlled limit. The transition probabilities between the states 
are also shown. 

In these one-dimensional stochastic processes, the saturated state is absorbing, as 
there is no transition possible which carries the system out of the saturated state. In a 
finite-size system, therefore, saturation must occur in a finite time, and the probability 
that the system has not yet saturated decreases exponentially in time, asymptotically 
[ 8 , 1 2 ] .  This saturation stems from the fluctuations due to the discreteness of a finite- 
size system when p = q. In the next sections, we solve for the kinetics of the monomer- 
monomer process on the complete graph and determine the nature of the saturation 
process. 

3. Transient kinetics in the adsorption-limited process 

On an N-site complete graph substrate, the hopping probabilities from state n to 
states n and n f 1 in the stochastic process underlying the adsorption-limited case are 
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If the surface becomes completely covered by a single species, i.e. n = fN, the hopping 
probabilities are identically zero, and this corresponds to the stopping of the reaction. 
If we define P , ( t )  as the probability that the substrate has n adsorbed reactants at  
time t ,  then this probability obeys the master equation, 

for In1 5 N - 1 ,  while for 112.1 = N, 

For a catalyst with a constant external supply of reactants, a time unit may be defined 
as the time required for an adsorption attempt onto each site of the substrate. Con- 
sequently, the time interval At for a single elemental event in the stochastic process 
is proportional to 1/N. Henceforth, we take this proportionality constant to be unity. 

Let us first examine the rate equation for the average surface concentration of 
reactants, z = ( n ) / N ,  

For p # q the system approaches one of the absorbing states exponentially quickly, 
with a time constant r = l / ( p  - q ) ,  independent of the system size. When p = q ,  then 
x = 0; thus at  the level of average densities, the system is static. Thus to find the 
approach to saturation requires analysis of the master equation. 

The formal solution to the master equation can be derived by standard methods, 
see e.g. [13], from which basic facts about ultimate saturation can be extracted. How- 
ever, the relative probabilities of saturation to all As, or to all Bs, can be found with 
no detailed calculations [ 1 2 ] .  In the underlying stochastic process, the first passage 
probability to +N (A-saturated), starting from an empty system, can be expressed as 
p N f N ( p q ) ,  where p N  is the probability of a single stochastic 'path' from 0 to  N,  and 
f N ( p q )  denotes the probability of all possible closed loops which can occur during the 
first passage from 0 to N. Similarly, the first passage probability to -N is q N f N ( p q ) .  
That is, for each stochastic path which leads to saturation of the system with all As,  
there is a mirror image path which leads to saturation of the system with all Bs. 
Consequently, the probability of eventual saturation to all As is 

Because this argument depends only on the symmetry p t.+ q and A CI B of the 
monomer-monomer process, equation (5) holds, not only for complete graphs, but for 
all  N-site lattices, regardless of the spatial dimensionality. 

Instead of presenting the solution to the discrete master equations, it is simpler and 
intuitively more revealing to employ a continuum description. Writing 3: E n / N ,  with 
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x ranging between -1 and $1 in steps of 1/N, and defining the continuous probability 
P ( x , t ) d x  = (l/N)Pn(t) as N + CO, one thereby finds that the probability density 
satisfies the Fokker-Planck equation, 

d 1 d2 
P(x,t) = ((I -PI% (1 - I.l>p(x,t) t Ixl)P(x, t ) .  (6) 

Notice that  the diffusion coefficient is state dependent, D ( z )  = (1 - I.[), reflecting 
the probability of successful adsorption being proportional to  the fraction of empty 
sites, 1 - 1x1. Since D ( x )  --f 0 as x + f l ,  the appropriate boundary condition for the 
probability density is P ( x  = f l , t )  < CO. The evolution of the surface concentration 
therefore can be viewed as the motion of a random walk moving in a medium that  is 
increasingly 'sticky' near the extremities of the absorbing interval. If the walk strays 
all the way t o  the endpoints where D = 0, the walk becomes completely mired and 
does not escape. 

The solution to the Fokker-Planck equation in the interesting case of p = q = f is 
straightforward. Exploiting the symmetry about x = 0,  we consider the interval [0,1], 
with the additional boundary condition of no flux passing through x = 0. Writing the 
eigenfunction expansion, 

we obtain the differential equation, 

d2 A2 

dx2 
-(1 - .)PA(.) + ,PA(.) = 0. 

The  substitution Qx(z) = z PA(.), where z = 1 - x, transforms equation (8) to 

Because PA(. = 1) is finite, Qx(z = 0) = 0. The boundary condition on QX(z)  for 
z = 1 is found by integrating equation (9) across x = 0. This gives 

(10) 
d 

- - P x ( 4 l t = o  dx - P x ( 4 l z = o  = 0 

which therefore requires dQ/dzl,=, = 0. 

Neumann functions of order one, J ,  and Yl ,  respectively [14, p362, 9.1.501 
The general solution to  equation (9) can be written in terms of the Ressel and 

&A(") = AJ;J,(AJ;) + B J f Y 1 ( A f i ) .  (11) 

The  boundary condition Qx(z = 0) = 0 implies B = 0,  while the boundary condition 
a t  z = 1 fixes X to  be one of the zeros of the Bessel function of order 0: A,, = &,, 
where the index n denotes the nth zero of this Bessel function. Therefore the general 
solution for P(x,t) is 
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0.5 

0 

-1.0 -0.6 -0.2 0.2 0.6 1.0 

Figure 3. Plots of the lowest eigenmode of the probability distribution function, 
P ( z ,  t ) ,  against the density difference z for ( a )  the adsorption-controlled limit, ( b )  
the reaction-controlled limit, and ( c )  a diffusive process on the same interval with 
a constant diffusion coefficient. The dependence of the corresponding diffusion co- 
efficients versus 1: are shown dashed. The area under each of the curves has been 
normalized to 1. 

where the A,  are fixed by initial conditions. 
A plot of the lowest mode of this eigenfunction expansion is shown in figure 3(a). 

The probability density has a cusp at  the origin, which arises from the discontinuous 
first derivative in D ( x ) ,  and the probability increases near the edges of the interval. 
This behaviour is opposite to that of constant diffusivity system, where the proba- 
bility density asymptotically becomes one-half of a sine wave (figure3(c)). Thus the 
qualitative effect of the state-dependent diffusion coefficient is to increase the proba- 
bility of the system being close to the saturated state and also to inhibit the ultimate 
saturation, relative to a constant diffusivity system. 

This intuition is confirmed by examining the survival probability, S ( t )  3 JT; P ( z , t ) d z ,  i.e. the probability that the substrate has not saturated by time t .  
Integrating equation (12) over the interval (-1, l), it is clear that S(t)  has the form 

where T, = 8 N / j i , ,  is the characteristic decay time of the nth mode. The decay time 
of the longest-lived mode therefore is ro % 1.38N.  For comparison, on an absorbing 
interval of the same length with a constant diffusivity D = 1, the corresponding decay 
time is ro = 4N/7r2 % 0 .405N.  

To find the mean time until saturation, we compute the mean first-passage time 
to reach either site N or site - N  in the equivalent stochastic process. Let us denote 
this mean first-passage time as t,, for a process which begins at  site n ,  corresponding 



Monomer-monomer model of heterogeneous catalysis 4305 

to  a substrate which initially contains n As. Then t ,  obeys the recursion relation, 

which expresses the first-passage time from site n in terms of the first-passage times 
from neighbouring sites. Using At = 1/N, this recursion relation can be recast as 

(15) 
2 

N - n ’  t,+, + t,-1 - 2t, = -- 

In the continuum limit this becomes 

2N -- -- - d2t(x) 
dx2 1 - x  

where t(x) now denotes the first-passage time to kl, starting from an initial surface 
coverage x = n/N.  Equation (16) must be supplemented with the boundary conditions 
t (1 )  = 0 and dt/dxl,=, = 0. Solving equation (16) yields 

t(x) = 2N(1 - x)(1 - ln(1 - z)). (17) 

I t  is interesting to  compare this mean saturation time with the corresponding result 
for a constant diffusivity system. For such a case, the analogue of equation ( 1 6 )  is 

d2t(x) 
dx2 
-- - -2N 

when the time increment is A t  = 1/N, and the corresponding solution is 

t(x) = N ( l  - x2). (19) 

For z = 0 the first-passage times for the two systems differ exactly by a factor of 
2. However, for the initial condition z = 1 - 1/N, corresponding to  a substrate 
with a single unoccupied site, the ratio of the saturation times for the two cases is 
proportional to  In N .  This slowing down stems from the inhibition of the adsorption 
process when the substrate is nearly filled. 

4. Transient kinetics in the reaction-limited process 

In the reaction-limited process, whenever a catalytic reaction occurs, the two sites 
freed are immediately repopulated by either an A and a B ,  two As, or two Bs, with 
respective probabilities 2pq, p 2 ,  and q2 [15]. In contrast to  the adsorption-limited case, 
As and Bs can now co-exist on the substrate, subject only to  the filling constraint, 
nA + nB = N .  Since the substrate is always full, the probability that a reaction 
actually occurs is proportional to  the product of the surface densities of As and Bs 
in the mean-field approximation. The hopping probabilities corresponding to  these 
transitions in the underlying stochastic process are therefore 



4306 D ben-Avraham et  a1 

From these hopping probabilities, the rate equation for y1 the average coverage of 
the substrate by As is 

For p # q ,  there is a net bias of either As or Bs, and the system saturates exponentially 
in time, with a characteristic decay time T = 1/(2(p - q ) ) .  For p = q = $, however, 
diffusive fluctuations drive the system to saturation. This dynamics can once again 
be investigated from the underlying master equation. Based on the hopping rates in 
equation (20), the master equations for p = q = $ are 

for 0 < nA < N ,  while for nA = 0,  N ,  the master equations are 

In the continuum limit, we obtain the Fokker-Planck equation, 

It is convenient to  transform to the density-difference variable E = 2y - 1, in order to 
compare directly with the Fokker-Planck equation for the adsorption-controlled case. 
One obtains 

(24) 
1 a 2  P ( z , t )  = -- (1 - x2) P ( E , t ) .  

2~ a x 2  

Since the position dependence of the diffusion coefficient is qualitatively similar for 
both the adsorption-limited and reaction-limited processes, we expect qualitative sim- 
ilar dynamical behaviour in these two cases. 

The eigenfunctions to  the time-independent eigenvalue equation are the Gegen- 
bauer polynomials [13, p 781, 22.6.51, C,”(y), with cy = 3/2. Thus the general solution 
to  equation (24) is 

00 

P ( z ,  t )  = AnC;/’(z) exp 
n=O 

where the coefficients An are determined by the initial conditions. Amusingly, the 
lowest mode of this expansion is exactly a constant, C:’2(z) = 1, which evidently arises 
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from the balance between the depletion of the probability density near the absorbing 
boundary and the inhibited diffusion as the endpoint is approached (figure 3 ( b ) ) .  

The mean saturation time, starting from a state containing n As obeys the recur- 
sion relation, in close analogy with equation (14), 

Solving this equation in the continuum limit gives 

To compare with corresponding results for the adsorption-controlled limit and also for 
a purely diffusive system, consider the ‘symmetric’ initial condition where 2 = 0, a 
lattice containing 50% As and 50% Bs. This is the analogue of the empty substrate 
initial condition in the adsorption-controlled limit. For z = 0,  equation (27) gives 
t o  = 2N In 2, compared with t o  = 2N in the adsorption-controlled limit, and t o  = N 
for pure diffusion. For the symmetric initial condition, saturation occurs faster in the 
reaction-controlled limit because the diffusion coefficient is always greater than that 
of the adsorption-controlled limit. On the other hand, for an initial condition of a 
single defect the saturation time is 2 In N ,  asymptotically, for both cases. 

5 .  Simulations 

We now discuss our Monte-Carlo simulation results in both the reaction-controlled 
and the adsorption-controlled limits. For two- and three-dimensional substrates, the 
simulations are in close agreement with mean-field results. However, in one dimension, 
substantial disparities between simulations and mean-field theory occur. In particular, 
the mean saturation time is proportional to N 2  for both the adsorption- and reaction- 
controlled limits, rather than being linear in N .  

5.1. Adsorption-controlled limit 

A direct simulation of the adsorption-controlled process is relatively inefficient, as 
there will be many attempts to adsorb a particle onto an already-occupied site before 
a successful adsorption finally occurs. This is especially true at  late stages, when the 
substrate is nearly full. To overcome this difficulty, it is conventional to  employ an 
algorithm in which particles are deposited only onto empty sites, and increment the 
time by l /Ne ,  where Ne = N -  In1 is the number of empty lattice sites. Unfortunately, 
this simple construction is not, in principle, correct. For a fixed density of vacancies 
(1 - x), the time until the next successful adsorption is a fluctuating quantity, with 
only the average value equal to l/Ne. However, since the probability of successful 
adsorption after n deposition attempts is 1 - (1 - z),+l , one can still deposit particles 
onto empty lattice sites only, provided that each adsorption is accompanied by a 
time increase compatible with the above probability. This is achieved by picking 
a random number P evenly distributed in ( 0 , l )  and assigning a time increment of 
[ln(l - r ) / l n ( l  - z ) ] / N .  With this method, no computer time is wasted on futile 
deposition attempts to  occupied sites, and the physically correct time increment is 
employed. 
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It is instructive to  compare the dynamics of these two algorithms. For the naive 
process of depositing particles on unoccupied sites and updating the time by l / N e ,  the 
corresponding master equation for the complete graph is (compare with equation (3)) 

for 1711 5 N - 1, while for 1711 = N, 

Here, 6t,  = l / N e  = 1/(N - 1.1). In the continuum limit, one obtains the Fokker- 
Planck equation 

1 d2 
2N 8x2 P ( z , t )  = - (1 - 1.1) - P ( z , t )  

which should be compared with equation (6). The two equations differ by a drift 
term, with a driving velocity that is of order 1/N. This term is sometimes called 
the ‘spurious flow’, which is an example of the Ito-Stratonovich dilemma for the 
appropriate interpretation of the Fokker-Planck equation [16]. For the monomer- 
monomer model on the complete graph, we can prove that the first passage time to 
saturation is the same in the two interpretations. Owing to the smallness of the drift 
term, there were no significant differences in the numerical data for the probability 
distribution of coverage using the two algorithms. Nevertheless, it, is useful to be 
cognisant of the shortcomings of the commonly accepted simulation method. 

In figure 4 ,  we plot the probability for the density difference on the substrate as 
a function of the density difference, in 1, 2 and 3 dimensions. The time has been 
chosen so that the saturation probability is 2 0.9 for the three cases, so that the 
probability density should be dominated by the lowest eigenmode. In one dimension, 
the probability is peaked at zero density difference, while in two and three dimensions, 
the probability increases as the density difference tends to its limiting value of f l .  
The behaviour in three dimensions is quantitatively very similar to that of mean-field 
theory (figure 3(a)).  The size dependence of the mean saturation time, t o ,  starting 
from an initially empty substrate is plotted in figure 5 .  In two and three dimensions 
the data suggest that t o  is roughly proportional to N .  A linear regression analysis 
yields t o  - 1.46N’.@7 in two dimensions and t o  - 1.83N’.@2 in three dimensions, where 
these numerical values are accurate to within 10%. These compare reasonably well 
with t o  = 2 N ,  the mean-field result from equation (17). The slightly larger exponent 
value in two dimensions may be suggestive of a logarithmic correction in the saturation 
time. 

On the other hand, the data for one dimension suggests that to  N 0.11N2. This 
quadratic dependence of the mean saturation time on N can be understood simply 
by considering the spatial arrangement of reactants in one dimension [9]. The system 
rapidly forms domains of A and B particles as the substrate fills, and the essential 
mechanism for saturation is the diffusion of all domain walls to the boundary of the 
system. On this basis, it is straightforward to show that the mean poisoning time 
grows as N 2 .  
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Figure 4. Simulation data for the probability distribution, P ( z ,  t ) ,  that the sub- 
strate is characterized by a density difference equal to z in the adsorption-controlled 
limit. ( a )  Results from averaging of 10 000 configurations of a one-dimensional sub- 
strate of linear dimension 250 for times 16 000 < t < 20 000. ( b )  5000 configurations 
for a square of 256 sites with 1000 _< t _< 1500. ( c )  9000 configurations for a cube of 
216 sites with 1000 5 t <_ 1200. 
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Figure 5. Dependence of the mean saturation time on the number of sites for an 
initially empty system, in the adsorption-controlled limit. e, one dimension; A ,  two 
dimensions; and W ,  three dimensions. 

5.2. Reaction-controlled limit 

For convenience in implementing a numerical algorithm, we choose the initial con- 
figuration to be a completely full lattice, with half of the sites randomly occupied 
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by each species. The simulation results for P ( z , t )  for one and two dimensions are 
depicted in figure 6. The relatively flat probability density in two dimensions is quite 
similar to  the mean-field picture, while the probability density in one dimension is 
peaked. Similarly, the mean saturation time appears to grow as 1.22Nl.l in two di- 
mensions, compared with the mean-field prediction of t,, = (21n2)N a 1.38N, while 
to  N 0.07N2.07 in one dimension (figure 7). Once again, there appears a qualitative 
change when the substrate dimensionality is one, which is analogous to the pattern of 
behaviour in the adsorption-controlled limit. 

r- 
0.6 1 I 

" 
-1.0 -0.6 -0.2 0.2 0.6 1.0 

Figure 6. Simulation data for the probability distribution, P ( z , t ) ,  that the sub- 
strate is characterized by a density difference equal to z in the reaction-controlled 
limit. ( a )  Results from averaging of 1500 configurations of a one-dimensional sub- 
strate of linear dimension 250 for times 16 000 < t < 20 000. ( b )  15 000 configurations 
for a square of 256 sites with 1000 < t < 1300. 

6. Conclusions 

We have investigated the kinetics of the monomer-monomer catalysis model in the 
mean-field limit. By modelling the substrate as a complete graph, one can describe the 
kinetics in terms of a one-dimensional stochastic process with hopping probabilities 
dependent on the density and the rates of adsorption and reaction. In the continuum 
limit, the probability distribution of surface coverage obeys a Fokker-Planck equation, 
with a state-dependent diffusion coefficient that reflects the composition dependence 
of the hopping probabilities. When the adsorption probabilities of A and B are un- 
equal, the system saturates in a time of order unity, independent of lattice size. For 
equal adsorption probabilities of A and B ,  the average surface coverage is stationary, 
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Figure 7. Dependence of the mean saturation time on the number of sites for a 
system initially containing a random distribution of 50% As and 50% Bs, in the 
reaction-controlled limit. 0 ,  one dimension; and A ,  two dimensions. 

corresponding to  a reactive steady state within a rate equation approximation. How- 
ever, diffusive fluctuations eventually drive a finite-sized system to saturation in a time 
proportional to  the number of catalyst sites. Owing to  the 'stickiness' of the stochastic 
process as saturation is approached, there is an anomalously large probability density 
for nearly full substrates a t  long times, compared with a constant diffusivity system. 
Monte-Carlo simulations of the monomer-monomer model show that basic dynamical 
features of the process agree with mean-field predictions for substrate dimensionality 
d 2 2, but that  substantial differences exist for d = 1. This suggests that  the upper 
critical dimension of the substrate for the monomer-monomer process is d, = 2. 

The methodology outlined here can be usefully applied to  a wider variety of cat- 
alytic processes, For example, if the physically-relevant possibility of desorption of 
reactants from the substrate occurs, in addition to desorption of the reaction product, 
then there are no true absorbing states. Therefore the system relaxes to  a steady state 
which is determined by the competition between desorption, which tends to empty the 
substrate, and the catalytic reaction, which drives the system towards saturation. This 
competition underlies a bistability transition [17,18], which can be understood a t  the 
mean-field level by the methods of this paper [18]. 

A second very interesting example is the monomer-dimer model [6,7,9,10,19-221, 
where one of the species adsorbs and dissociates, so that i t  occupies two adjacent 
lattice sites. This has been proposed as a model for the oxidation of carbon monoxide 
by oxygen on platinum, for example [ G ,  71. Monte-Carlo simulations of the monomer- 
dimer process in the adsorption-controlled limit indicate that this system reaches a 
putative reactive steady state for a certain range of the relative deposition rates of A 
and B [6-91. However, there is no true steady state in a finite-size system since the 
saturated catalyst is the only true absorbing state. From this viewpoint, a primary 
issue is to  determine how long it takes before saturation is reached. Within the Fokker- 
Planck description, the monomer-dimer reaction induces a bias away from the true 
absorbing states, which leads to a saturation time that varies exponentially in the size 
of the system rather than linearly. Thus the master equation description demonstrates 
that  the reactive steady-states predicted by the rate equation for the monomer-dimer 
and monomer-monomer processes are of completely different characters. 
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More interestingly, the master equation approach indicates that there is a funda- 
mental difference between the adsorption-controlled and reaction-controlled limits for 
the monomer-dimer process. As a function of the surface reaction rate, there appears 
to be a transition from a regime where the saturation time grows as a power law in the 
system size to  a regime where the saturation time grows exponentially in the size. This 
suggests a considerably richer phase diagram for the monomer-dimer process than has 
been appreciated thus far. These features will be treated in a future publication. 
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